Changes to 16-SEP-2012: RAID Allocation Guide between r3 and r11

%| A   | B    | Redundancy | Space Overhead |%
Given several trays (''T'') of disks, each tray with the same number of disks (''N'') per tray we can compute the "redundancy" (''R'') of an array built out of various standard and nested configurations, as well as how much space is lost to parity/mirroring.
(blank line)
Redundancy (''R'') is defined as the minimum number of disks that can be lost to cause integrity failure (position is worst-case)
(blank line)
The tables below are list the formula to compute each value (if needed) and the example values in parenthesis for 3 trays of each 7 disks (21 disks total), that is ''N'' = 7, ''T'' = 3.
(blank line)
Standard RAID levels:
%| RAID Level | Redundancy        | Space Overhead                               |%
| 0    | 0    | 1          | 0 %            | --> | 0           | 1                 | 0 %                                          |
| 1           | ''N'' x ''T'' (21)| (''N'' x ''T'' - 1) / (''N'' x ''T'') (95%)  |
| 5           | 2                 | 1 / (''N'' x ''T'') (5%)                     |
| 6           | 3                 | 2 / (''N'' x ''T'') (10%)                    |
| 10          | 2                 | -                                            |
(blank line)
Nested RAID Levels (RAID ''A'' of RAID ''B''s, or RAID''B''+''A''):
%| A   | B    | Redundancy        | Space Overhead                                                  |%
| 0    | 0    | 1                 | 0 %                                                             |
| 0    | 1    | ''N'' (7)         | (''N'' - 1) / ''N'' (86%)                                       |
| 0    | 5    | 2                 | 1 / ''N'' (14%)                                                 |
| 0    | 6    | 3                 | 2 / ''N'' (28%)                                                 |
| 1    | 0    | ''T'' (3)         | (''T'' - 1) / ''T'' (66%)                                       |
| 1    | 1    | ''N'' x ''T'' (21)| (''N'' x ''T'' - 1) / (''N'' x ''T'') (95%)                     |
| 1    | 5    | 2 x ''T'' (6)     | (''N'' x (''T'' - 1) + 1) / (''N'' x ''T'') (71%)               |
| 1    | 6    | 3 x ''T'' (9)     | (''N'' x (''T'' - 2) + 1) / (''N'' x ''T'') (76%)               |
| 5    | 0    | 2                 | 1 / ''T'' (33%)                                                 |
| 5    | 1    | ''N'' x 2 (14)    | 1 - ((1 - ((''N'' - 1) / ''N'')) x ((''T'' - 1) / ''T'')) (91%) |
| 5    | 5    | 4                 | (''N'' + ''T'' - 1) / (''N'' x ''T'') (43%)                     |
| 5    | 6    | 6                 | (''N'' + (''T'' - 1) x 2) / (''N'' x ''T'') (52%)               |
| 6    | 0    | 3                 | 2 / ''T'' (66%)                                                 |
| 6    | 1    | ''N'' x 3 (21)    | (''N'' x 3 - 1) / (''N'' x ''T'') (95%)                         |
| 6    | 5    | 6                 | (''N'' x 2 + 1) / (''N'' x ''T''') (71%)                        |
| 6    | 6    | 9                 | (''N'' x 2 + 2) / (''N'' x ''T''') (76%)                        |
(blank line)
Given this we can also come up with an aggregate "mean time between failure" (MTBF) based on the MTBF of each disk and the amount of redundancy.
(blank line)
(blank line)
For most RAID levels this would be:  ''MTBF_AGG'' = ''MTBF_DISK'' / (''N'' x ''T'' - ''R'' + 1)
(blank line)
For RAID levels ''B''+0 this would be: ''MTBF_AGG'' = (''MTBF_DISK'' * ''T'') / (''N'' - ''R'' + 1)
(blank line)
For RAID10, it's even more complicated.

Legend

     Only in r3
     Only in r11
     -->      Modified slightly between r3 and r11